GPU操作性能指南¶
本指南涵盖Genesis中GPU操作的优化,重点介绍模块化GPU操作结构、Triton内核实现和性能调优策略。
概述¶
Genesis实现了复杂的GPU后端,包括: - 使用Triton的模块化GPU操作 - 自定义CUDA内存管理 - 自适应块大小优化 - 性能监控和分析工具
架构概述¶
模块化GPU操作结构¶
Genesis将GPU操作分离为专门的模块:
Text Only
genesis/ndarray/gpu_ops/
├── __init__.py # 操作注册和分派
├── basic_ops.py # 逐元素操作(add、mul等)
├── tensor_ops.py # 张量操作(matmul、conv等)
├── random_ops.py # 随机数生成
└── reduction_ops.py # 约简操作(sum、mean等)
操作分派系统¶
Python
# genesis/ndarray/gpu_ops/__init__.py
from .basic_ops import add_triton, mul_triton, div_triton
from .tensor_ops import matmul_triton, conv2d_triton
from .reduction_ops import sum_triton, mean_triton
# 动态分派的操作注册表
GPU_OPS_REGISTRY = {
'add': add_triton,
'mul': mul_triton,
'div': div_triton,
'matmul': matmul_triton,
'sum': sum_triton,
'mean': mean_triton,
}
def dispatch_gpu_op(op_name, *args, **kwargs):
"""将操作分派到相应的GPU内核。"""
if op_name not in GPU_OPS_REGISTRY:
raise NotImplementedError(f"GPU操作 {op_name} 未实现")
return GPU_OPS_REGISTRY[op_name](*args, **kwargs)
Triton内核实现¶
基本逐元素操作¶
Python
# genesis/ndarray/gpu_ops/basic_ops.py
import triton
import triton.language as tl
@triton.jit
def add_kernel(x_ptr, y_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr):
"""优化的逐元素加法内核。"""
pid = tl.program_id(axis=0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
# 使用向量化加载数据
x = tl.load(x_ptr + offsets, mask=mask, other=0.0)
y = tl.load(y_ptr + offsets, mask=mask, other=0.0)
# 计算
output = x + y
# 存储结果
tl.store(output_ptr + offsets, output, mask=mask)
def add_triton(x, y):
"""基于Triton的张量加法。"""
output = genesis.empty_like(x)
n_elements = x.numel()
# 基于张量大小的自适应块大小
if n_elements < 262144: # < 256K元素
BLOCK_SIZE = 256
elif n_elements < 4194304: # < 4M元素
BLOCK_SIZE = 512
else:
BLOCK_SIZE = 1024
grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),)
add_kernel[grid](
x.data_ptr(), y.data_ptr(), output.data_ptr(),
n_elements, BLOCK_SIZE=BLOCK_SIZE
)
return output
高级张量操作¶
Python
# genesis/ndarray/gpu_ops/tensor_ops.py
@triton.jit
def matmul_kernel(
a_ptr, b_ptr, c_ptr,
M, N, K,
stride_am, stride_ak,
stride_bk, stride_bn,
stride_cm, stride_cn,
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
):
"""高性能矩阵乘法内核。"""
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
pid_m = pid // num_pid_n
pid_n = pid % num_pid_n
offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
a = tl.load(a_ptrs, mask=(offs_k[None, :] < K - k * BLOCK_SIZE_K))
b = tl.load(b_ptrs, mask=(offs_k[:, None] < K - k * BLOCK_SIZE_K))
accumulator += tl.dot(a, b)
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
c = accumulator.to(tl.float16)
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
def matmul_triton(a, b):
"""使用Triton优化的矩阵乘法。"""
assert a.shape[-1] == b.shape[-2], f"形状不匹配: {a.shape} @ {b.shape}"
M, K = a.shape[-2:]
K2, N = b.shape[-2:]
assert K == K2
c = genesis.empty((*a.shape[:-2], M, N), dtype=a.dtype, device=a.device)
# 基于问题大小优化块大小
if M >= 2048 and N >= 2048:
BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K = 128, 128, 32
elif M >= 512 and N >= 512:
BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K = 64, 64, 32
else:
BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K = 32, 32, 32
grid = lambda meta: (
triton.cdiv(M, meta['BLOCK_SIZE_M']) * triton.cdiv(N, meta['BLOCK_SIZE_N']),
)
matmul_kernel[grid](
a.data_ptr(), b.data_ptr(), c.data_ptr(),
M, N, K,
a.stride(-2), a.stride(-1),
b.stride(-2), b.stride(-1),
c.stride(-2), c.stride(-1),
BLOCK_SIZE_M=BLOCK_SIZE_M,
BLOCK_SIZE_N=BLOCK_SIZE_N,
BLOCK_SIZE_K=BLOCK_SIZE_K,
)
return c
内存优化的约简操作¶
Python
# genesis/ndarray/gpu_ops/reduction_ops.py
@triton.jit
def sum_kernel(
input_ptr, output_ptr,
n_elements,
BLOCK_SIZE: tl.constexpr
):
"""内存高效的求和内核。"""
pid = tl.program_id(axis=0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
# 按块加载和求和
x = tl.load(input_ptr + offsets, mask=mask, other=0.0)
block_sum = tl.sum(x)
# 使用原子加法进行最终约简
tl.atomic_add(output_ptr, block_sum)
@triton.jit
def reduce_kernel(
input_ptr, output_ptr,
n_rows, n_cols,
BLOCK_SIZE_X: tl.constexpr,
BLOCK_SIZE_Y: tl.constexpr
):
"""具有最优内存访问的2D约简内核。"""
pid_x = tl.program_id(axis=0)
pid_y = tl.program_id(axis=1)
offs_x = pid_x * BLOCK_SIZE_X + tl.arange(0, BLOCK_SIZE_X)
offs_y = pid_y * BLOCK_SIZE_Y + tl.arange(0, BLOCK_SIZE_Y)
mask_x = offs_x < n_rows
mask_y = offs_y < n_cols
# 加载块
ptrs = input_ptr + offs_x[:, None] * n_cols + offs_y[None, :]
mask = mask_x[:, None] & mask_y[None, :]
x = tl.load(ptrs, mask=mask, other=0.0)
# 块内约简
result = tl.sum(x, axis=1) # 跨列求和
# 存储结果
out_ptrs = output_ptr + offs_x
tl.store(out_ptrs, result, mask=mask_x)
def sum_triton(x, dim=None, keepdim=False):
"""优化的张量求和。"""
if dim is None:
# 全局求和
result = genesis.zeros((), dtype=x.dtype, device=x.device)
n_elements = x.numel()
BLOCK_SIZE = min(1024, triton.next_power_of_2(n_elements))
grid = (triton.cdiv(n_elements, BLOCK_SIZE),)
sum_kernel[grid](
x.data_ptr(), result.data_ptr(),
n_elements, BLOCK_SIZE=BLOCK_SIZE
)
return result
else:
# 特定维度约简
# 实现特定维度约简
return reduce_along_dim(x, dim, keepdim)
性能优化策略¶
1. 自适应块大小优化¶
Python
class AdaptiveBlockSize:
"""基于张量特性动态优化块大小。"""
def __init__(self):
self.cache = {}
self.performance_history = {}
def get_optimal_block_size(self, operation, tensor_size, dtype):
"""获取给定操作和张量的最优块大小。"""
cache_key = (operation, tensor_size, dtype.name)
if cache_key in self.cache:
return self.cache[cache_key]
# 基于张量大小和操作确定块大小
if operation == 'elementwise':
if tensor_size < 262144: # < 256K元素
block_size = 256
elif tensor_size < 4194304: # < 4M元素
block_size = 512
else:
block_size = 1024
elif operation == 'matmul':
# 矩阵乘法特定优化
sqrt_size = int(tensor_size ** 0.5)
if sqrt_size < 512:
block_size = (32, 32, 32)
elif sqrt_size < 2048:
block_size = (64, 64, 32)
else:
block_size = (128, 128, 32)
elif operation == 'reduction':
# 约简操作优化
block_size = min(1024, triton.next_power_of_2(tensor_size))
else:
# 默认回退
block_size = 512
self.cache[cache_key] = block_size
return block_size
def update_performance(self, operation, tensor_size, dtype, block_size, elapsed_time):
"""更新性能历史记录用于未来优化。"""
key = (operation, tensor_size, dtype.name, block_size)
if key not in self.performance_history:
self.performance_history[key] = []
self.performance_history[key].append(elapsed_time)
# 只保留最近的测量
if len(self.performance_history[key]) > 10:
self.performance_history[key] = self.performance_history[key][-10:]
# 全局优化器实例
block_optimizer = AdaptiveBlockSize()
2. 内存访问模式优化¶
Python
@triton.jit
def coalesced_copy_kernel(
src_ptr, dst_ptr,
n_elements, stride_src, stride_dst,
BLOCK_SIZE: tl.constexpr
):
"""内存合并的张量拷贝内核。"""
pid = tl.program_id(axis=0)
block_start = pid * BLOCK_SIZE
# 确保合并的内存访问
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
# 使用适当的步长加载
src_offsets = offsets * stride_src
dst_offsets = offsets * stride_dst
data = tl.load(src_ptr + src_offsets, mask=mask)
tl.store(dst_ptr + dst_offsets, data, mask=mask)
@triton.jit
def transpose_kernel(
input_ptr, output_ptr,
n_rows, n_cols,
BLOCK_SIZE: tl.constexpr
):
"""缓存友好的矩阵转置。"""
pid = tl.program_id(axis=0)
# 基于tile的转置以获得更好的缓存使用
row_start = (pid // (n_cols // BLOCK_SIZE)) * BLOCK_SIZE
col_start = (pid % (n_cols // BLOCK_SIZE)) * BLOCK_SIZE
rows = row_start + tl.arange(0, BLOCK_SIZE)
cols = col_start + tl.arange(0, BLOCK_SIZE)
row_mask = rows < n_rows
col_mask = cols < n_cols
# 加载tile
input_offsets = rows[:, None] * n_cols + cols[None, :]
mask = row_mask[:, None] & col_mask[None, :]
tile = tl.load(input_ptr + input_offsets, mask=mask)
# 存储转置的tile
output_offsets = cols[:, None] * n_rows + rows[None, :]
tl.store(output_ptr + output_offsets, tl.trans(tile), mask=tl.trans(mask))
3. 内核融合优化¶
Python
@triton.jit
def fused_linear_relu_kernel(
x_ptr, weight_ptr, bias_ptr, output_ptr,
n_batch, n_input, n_output,
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr
):
"""融合的线性层 + ReLU内核以减少内存带宽。"""
pid = tl.program_id(axis=0)
# 矩阵乘法逻辑(简化)
# ... matmul computation ...
# 融合的ReLU激活
result = tl.maximum(matmul_result + bias, 0.0)
# 单次内存写入
tl.store(output_ptr + offsets, result, mask=mask)
@triton.jit
def fused_attention_kernel(
q_ptr, k_ptr, v_ptr, output_ptr,
seq_len, head_dim,
scale: tl.constexpr,
BLOCK_SIZE: tl.constexpr
):
"""融合的注意力计算内核。"""
# 计算注意力分数
scores = compute_qk_scores(q_ptr, k_ptr, seq_len, head_dim)
# 应用缩放和softmax
scores = scores * scale
attention_weights = tl_softmax(scores, axis=-1)
# 将注意力应用到值
output = compute_attention_output(attention_weights, v_ptr, seq_len, head_dim)
# 单次输出写入
tl.store(output_ptr + offsets, output, mask=mask)
def fused_linear_relu(x, weight, bias):
"""融合的线性层与ReLU激活。"""
batch_size, input_size = x.shape
output_size = weight.shape[0]
output = genesis.empty(batch_size, output_size, dtype=x.dtype, device=x.device)
# 融合的最优块大小
BLOCK_SIZE_M = 64
BLOCK_SIZE_N = 64
BLOCK_SIZE_K = 32
grid = lambda meta: (
triton.cdiv(batch_size, meta['BLOCK_SIZE_M']) *
triton.cdiv(output_size, meta['BLOCK_SIZE_N']),
)
fused_linear_relu_kernel[grid](
x.data_ptr(), weight.data_ptr(), bias.data_ptr(), output.data_ptr(),
batch_size, input_size, output_size,
BLOCK_SIZE_M=BLOCK_SIZE_M,
BLOCK_SIZE_N=BLOCK_SIZE_N,
BLOCK_SIZE_K=BLOCK_SIZE_K
)
return output
性能监控和分析¶
1. 内置性能指标¶
Python
import time
import contextlib
class GPUProfiler:
"""分析GPU操作性能。"""
def __init__(self):
self.metrics = {}
self.current_operation = None
@contextlib.contextmanager
def profile_operation(self, operation_name):
"""用于分析操作的上下文管理器。"""
self.current_operation = operation_name
# 计时前同步
genesis.cuda.synchronize()
start_time = time.perf_counter()
try:
yield
finally:
genesis.cuda.synchronize()
end_time = time.perf_counter()
elapsed = end_time - start_time
if operation_name not in self.metrics:
self.metrics[operation_name] = []
self.metrics[operation_name].append(elapsed)
def get_stats(self, operation_name=None):
"""获取性能统计。"""
if operation_name:
times = self.metrics.get(operation_name, [])
if not times:
return None
return {
'mean': sum(times) / len(times),
'min': min(times),
'max': max(times),
'count': len(times)
}
else:
stats = {}
for op_name in self.metrics:
stats[op_name] = self.get_stats(op_name)
return stats
def print_summary(self):
"""打印性能摘要。"""
print("GPU操作性能摘要:")
print("-" * 50)
for op_name, stats in self.get_stats().items():
print(f"{op_name}:")
print(f" 平均: {stats['mean']*1000:.3f}ms")
print(f" 最小: {stats['min']*1000:.3f}ms")
print(f" 最大: {stats['max']*1000:.3f}ms")
print(f" 次数: {stats['count']}")
print()
# 全局分析器实例
gpu_profiler = GPUProfiler()
# 在操作中使用分析器的示例
def add_with_profiling(x, y):
with gpu_profiler.profile_operation('add'):
return add_triton(x, y)
2. 内存带宽分析¶
Python
def analyze_memory_bandwidth(operation_func, tensor_sizes, dtype=genesis.float32):
"""分析操作的内存带宽利用率。"""
results = []
theoretical_bandwidth = 1555e9 # A800 HBM2e带宽,字节/秒
for size in tensor_sizes:
# 创建测试张量
if isinstance(size, tuple):
x = genesis.randn(*size, dtype=dtype, device='cuda')
y = genesis.randn(*size, dtype=dtype, device='cuda')
else:
x = genesis.randn(size, dtype=dtype, device='cuda')
y = genesis.randn(size, dtype=dtype, device='cuda')
# 计算理论传输的字节数
bytes_per_element = dtype.itemsize
total_elements = x.numel()
# 对于二元操作:读取2个张量 + 写入1个张量
total_bytes = total_elements * bytes_per_element * 3
# 预热
for _ in range(5):
_ = operation_func(x, y)
# 计时操作
genesis.cuda.synchronize()
start_time = time.perf_counter()
num_iterations = 10
for _ in range(num_iterations):
result = operation_func(x, y)
genesis.cuda.synchronize()
end_time = time.perf_counter()
# 计算指标
elapsed_time = (end_time - start_time) / num_iterations
achieved_bandwidth = total_bytes / elapsed_time
bandwidth_efficiency = achieved_bandwidth / theoretical_bandwidth
results.append({
'size': size,
'elements': total_elements,
'elapsed_ms': elapsed_time * 1000,
'bandwidth_gb_s': achieved_bandwidth / 1e9,
'efficiency_percent': bandwidth_efficiency * 100,
'theoretical_gb_s': theoretical_bandwidth / 1e9
})
print(f"大小 {size}: {achieved_bandwidth/1e9:.1f} GB/s ({bandwidth_efficiency:.1%})")
return results
# 分析加法操作性能
sizes = [(256, 256), (1024, 1024), (2048, 2048), (4096, 4096)]
bandwidth_results = analyze_memory_bandwidth(add_triton, sizes)
3. 自动性能调优¶
Python
class AutoTuner:
"""自动调优内核参数以获得最佳性能。"""
def __init__(self):
self.best_configs = {}
def tune_kernel(self, kernel_func, test_inputs, param_space):
"""自动调优内核参数。"""
best_time = float('inf')
best_config = None
print(f"正在调优内核,共有 {len(param_space)} 个配置...")
for i, config in enumerate(param_space):
try:
# 预热
for _ in range(3):
_ = kernel_func(*test_inputs, **config)
# 计时执行
genesis.cuda.synchronize()
start_time = time.perf_counter()
num_runs = 10
for _ in range(num_runs):
result = kernel_func(*test_inputs, **config)
genesis.cuda.synchronize()
end_time = time.perf_counter()
elapsed = (end_time - start_time) / num_runs
if elapsed < best_time:
best_time = elapsed
best_config = config
print(f"配置 {i+1}: {elapsed*1000:.3f}ms - {config}")
except Exception as e:
print(f"配置 {i+1} 失败: {e}")
print(f"最佳配置: {best_config} ({best_time*1000:.3f}ms)")
return best_config, best_time
# 矩阵乘法自动调优示例
def tune_matmul():
# 定义参数空间
block_sizes = [
{'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32},
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32},
{'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32},
{'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64},
]
# 测试输入
a = genesis.randn(1024, 1024, device='cuda')
b = genesis.randn(1024, 1024, device='cuda')
# 运行自动调优器
tuner = AutoTuner()
best_config, best_time = tuner.tune_kernel(
matmul_triton, [a, b], block_sizes
)
return best_config
最佳实践¶
1. 内核开发指南¶
- 内存合并: 确保连续的内存访问模式
- 块大小优化: 使用2的幂,考虑占用率
- 寄存器使用: 监控大内核的寄存器溢出
- 共享内存: 为数据重用使用共享内存
- 分支发散最小化: 可能时避免条件分支
2. 性能优化检查清单¶
- 分析内存带宽利用率
- 为目标GPU优化块大小
- 最小化内核启动开销
- 为相关操作使用内核融合
- 监控GPU占用率和资源使用
- 优化后验证数值精度
3. 调试GPU操作¶
Python
def debug_gpu_operation(operation_func, *inputs):
"""使用详细分析调试GPU操作。"""
print("GPU操作调试信息:")
print("=" * 40)
# 输入分析
for i, inp in enumerate(inputs):
print(f"输入 {i}:")
print(f" 形状: {inp.shape}")
print(f" 数据类型: {inp.dtype}")
print(f" 设备: {inp.device}")
print(f" 内存使用: {inp.numel() * inp.dtype.itemsize / 1e6:.1f} MB")
print(f" 连续性: {inp.is_contiguous()}")
print()
# GPU内存状态
print("GPU内存状态:")
print(f" 已分配: {genesis.cuda.memory_allocated() / 1e6:.1f} MB")
print(f" 缓存: {genesis.cuda.memory_cached() / 1e6:.1f} MB")
print()
# 执行带分析的操作
genesis.cuda.synchronize()
start_time = time.perf_counter()
result = operation_func(*inputs)
genesis.cuda.synchronize()
end_time = time.perf_counter()
# 结果分析
print("操作结果:")
print(f" 执行时间: {(end_time - start_time) * 1000:.3f}ms")
print(f" 输出形状: {result.shape}")
print(f" 输出数据类型: {result.dtype}")
print(f" 输出设备: {result.device}")
print()
# 数值验证
print("数值验证:")
print(f" 最小值: {result.min().item():.6f}")
print(f" 最大值: {result.max().item():.6f}")
print(f" 平均值: {result.mean().item():.6f}")
print(f" 存在NaN: {genesis.isnan(result).any().item()}")
print(f" 存在Inf: {genesis.isinf(result).any().item()}")
return result
# 使用示例
x = genesis.randn(1000, 1000, device='cuda')
y = genesis.randn(1000, 1000, device='cuda')
result = debug_gpu_operation(add_triton, x, y)
这个全面的指南涵盖了Genesis中模块化GPU操作架构,提供了详细的实现示例和优化策略,以实现最佳性能。